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Dispersion in a curved tube during oscillatory flow 
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(Received 11 August 1989 and in revised form 26 July 1990) 

The effect of curvature on longitudinal dispersion in an axially uniform toroidal tube 
during oscillatory flow is investigated. The regimes of dispersion and the rate of 
longitudinal transport are estimated by order-of-magnitude arguments. Experiments 
are reported for the range, 0.66 < Dn2/a4 < 2.4,5.4 < a < 26, Sc = 0.68, where Dn is 
the Dean number, a is the Womersley number and Sc is the Schmidt number. For 
p2 = a2Sc > 30, curvature causes a sharp increase in the effective diffusivity, relative 
to  that for a straight tube, by a factor of about 6 a t  Dn2/a4 x 2. The results from two 
numerical simulation methods are also presented. One, a Monte Carlo simulation 
(0.01 < Dn < 10, 0.01 < a < 0.32, Sc = lo4), predicts the spread of a bolus in quasi- 
steady flow. The other, a spectral-element method (1 < Dn < 1000, 1 < a < 100, 
Sc = 0.68), is used to find the dispersion in unsteady oscillatory flow subjected to a 
constant longitudinal concentration gradient. Two mechanisms are identified by 
which axial transport is modified by curvature. First, the enhanced lateral transport 
due to  secondary flow decreases axial transport by a factor of up to 5 for low p” and 
increases axial transport by an even greater amount for high p”. Second, axial 
transport is enhanced owing to  a form of resonance when the secondary flow 
circulation time is equal to  the cycle period. 

1. Introduction 
The primary impetus for this study was the investigation of artificial respiration 

at high frequency, a method which has been shown to produce adequate gas 
exchange at tidal (breath) volumes much smaller than those characteristic of normal 
breathing (Drazen, Kamm & Slutsky 1984). While several mechanisms are likely to 
be responsible for the gas exchange observed experimentally, shear-augmented 
dispersion is thought to be an important factor. In  this context, secondary flows 
generated by curvature and branching probably influence the rate of transport. 
Understanding the effect of curvature on dispersion in a uniform curved tube is 
fundamental to the study of transport in more complex geometries such as those 
found in the lung. 

Shear-augmented dispersion in oscillatory flow has also been proposed as an 
alternative to heat pipes in specialized industrial applications (Kurzweg 1985). It is 
instrumental in the regulation of salinity, temperature, nutrients and wastes in tidal 
estuaries (Young, Rhines & Garrett 1982; Holley, Harleman & Fischer 1970; Fischer 
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1972 ; Smith 1982) and causes dispersion of biological and chemical contaminants 
when aquifer levels fluctuate. 

Previous analytical (Watson 1983) and experimental (Joshi et al. 1983) studies 
have characterized dispersion during oscillatory flow in a straight pipe with a 
constant axial gradient of concentration or temperature. For these conditions, and 
for a given Reynolds number (RP = 2aw/v, where a is the tube radius, tu is the axial 
velocity scale and v is the kinematic viscosity), dispersion is controlled by the ratio 
of radial mass diffusion time to cycle period (p” = a2w/K, where w is the radian 
frequency and K the molrcular diffusivity) and thc Schmidt number ( S c  = u / K ) .  

Steady and oscillatory flow in curved tubes has been extensively studied using a 
variety of analytical, numerical and experimental techniques (Berger, Talbot & Yao 
1983; Pedlcy 1980). I n  these, the fluid dynamic behaviour in a tube of given 
curvature ratio, u/b ,  where b is the radius of curvature, is most often characterized 
by the Dean number (Dn = KP(a/b)i)  for steady flow. or Dn and the Womersley 
number (a  = p/Sci) when the flow is oscillatory. 

Erdogan & Chatwin (1967) used Dean’s (1928) steady flow velocity profile and a 
perturbation mcthod to calculate the effect of small secondary flow on dispersion. 
finding that the drop in axial transport correlates wi th  the parameter Dn‘Sc. Nunge, 
Lin & Gill (1972) used the flow solution of Topakoglu (1967), applicable for arbitrary 
curvature ratio, t o  obtain similar results. Janssen (1976) examined larger values of 
Dn2Sc using an approximate numerical method. ,Johnson & Kamm (1986) studied the 
same range of parameters but with a more accurate approach. They employed both 
Monte Carlo and spectral mcthods for low L)n using Dean’s (1928) flow solution. 
Johnson & Kamm summarize the results of Janssen and others for the reduction in 
axial dispersion relative to that in a straight tube and demonstrate close agreement 
with cxperiments. These results were recently extended to higher l)n using a similar 
approach (Daskopoulos & Lenhoff 1988). 

Eckmann & Grotberg (1987) applied a regular perturbation method valid for 
arbitrary curvature ratio and ratio of stroke length to tube diameter of order one to 
the combincd problem of flow and dispersion in a curved tube during oscillatory flow. 
They considered the case Sc z 1 and employed boundary conditions of uniform time- 
averaged concentration a t  the ends of the tube. In their results. an abrupt increase 
in transport rate was observed when the ratio of stroke length to tube radius 
increases from about 1 to 5 for a > 5. 

In  this paper, the various flow and transport regimes found during oscillatory flow 
in a curved tube are first established and the scaling laws for transport are obtained 
by employing an order-of-magnitude analysis of the governing equations along the 
lines of Pedley & Kamm (1988) ($2). Second, experimental results are prcsented for 
a transition region where curvature begins to affect the rate of transport ($3). Next, 
the results from two numerical methods are presented. I n  the limit of low a and low 
Dn the axial and secondary flow profiles are known. In $4, these are combined with 
a simple Monte Carlo technique to model the dispersion of a bolus of tracer material. 
At higher values of a and D n ,  secondary flows significantly interact with and alter 
the axial velocity profile. For these cases, we employ a spectral-element numerical 
code to solve the incompressible Navier-Stokes and mass conservation equations 
( $ 5 ) .  Results from thc two numerical methods and the experiments are compared and 
characterized ($ 6). 
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2. Order-of-magnitude analysis : asymptotic behaviour 
2.1. Governing equations 

The normalized momentum and mass conservation equations for fully developed 
laminar flow in a uniform tube of small curvature ratio (Berger et ul. 1983) can be 
written in Cartesian coordinates as 

aw 2 
at Dn 
- + ( u . V ) w = n z + - v ~ W ,  

av 2 
at Dn 

- + ( u s  V)u-wZi= v17'+-v2u, 

v .u=o .  (2.3) 
The species conservation equation for the same conditions is 

v2c, -+(u .V)C+WG=- 
ac 
at D n  Sc (2.4) 

where subscript z denotes the axial derivative, and G = aC/az is the constant axial 
concentration gradient. Also, 

0 = ui+ vj, 

where - denotes a dimensional variable. Note that the axial component is not 
included in the velocity vector so that the axial momentum equation may be treated 
as a passive scalar equation, allowing the simplification of solving a quasi-two- 
dimensional flow problem. Constraining the axial concentration gradient to be 
constant reduces the diffusion equation to quasi-two-dimensional form, where the 
axial convective term is viewed as a time-dependent 'source ' term. 

2.2. Term dominance criteria 
Axial flow is driven by the axial pressure gradient, thus the pressure term in (2.1) 
may be balanced by unsteady, convective or viscous terms (or some combination of 
these). Similarly, flow in the cross-sectional plane is driven by centrifugal forces and 
may be dominated by unsteady, convective or viscous terms (see (2.2)). Asymptotic 
regimes of flow are identified by forming ratios among the unsteady, convective and 
viscous terms with the following characterizations : t" - T (cycle period), 2% N wo (bulk 
r.m.s. velocity), C, v" - v, (the characteristic secondary flow velocity) and 2, ij - a. 

F I, M 223 1R 
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The dominance criteria obtained from the cross-sectional momentum equations are 
found to be identical to those obtained from the axial momentum equation. Both, 
however, require scaling estimates for the secondary flow velocity which may be 
obtained by balancing the dominant term in the cross-sectional momentum equations 
with the centrifugal term, obtaining for viscous-dominated flow 

for flow dominated by unsteadiness 

tDn $-[;I 7' 
and for flow dominated by convective effects 

t 3 N [;I , 
WO 

where (2.7) presumes that the core flow is not 

(2.7) 

inviscid. The more correct limit for 
large Dn, taking account of the rotational but inviscid core, modifies the right-hand 
side of (2.7) by a factor Dn-f (Pedley 1980). For the purpose of defining flow regimes, 
however, (2.7) will suffice. 

Using (2.5)-(2.7), dominance criteria may be established which are consistent with 
these scalings and conform to the asymptotic regimes found by Yamane et al. (1985), 
i.e. flow is viscous when the viscous terms in (2.1) and (2.2) dominate their respective 
unsteady and convective terms, or when 

a2 6 1 and Dn 4 1 (zones 1, 2 , 4  on figure l a ,  b ) ,  (2.8) 

flow is unsteady when the unsteady terms dominate the viscous and convective 
terms, 

a2 $ 1 and Dn/u2 6 1 (zone3), (2.9) 
and flow is convective when the convective terms are much larger than the unsteady 
and viscous terms, 

D n / a z $  1 and D n 9  1 (zone5). (2.10) 

These regimes are indicated on figure 1 (a,  b)  for two values of Sc. 
Similarly, species transport in the axial direction is driven by axial convection, 

thus dispersion may be unsteady, convective (in the lateral sense) or diffusive (i.e. 
molecular diffusion dominates) depending on the relative magnitudes of the 
corresponding terms in (2.4). The dominance criterion depends on the type of flow 
because of the different scaling (2.5)-(2.7) for secondary flow. For viscous flow, 
dispersion is diffusive when the diffusive term dominates the unsteady and convective 
terms, pz 6 1 and Dn2Sc 4 1 (zone l),  (2.11) 

dispersion is unsteady when the convective and diffusive terms are small, 

(2.12) 
Dn2 
- 6  1 and p2 $ 1 (zone2), 
a2 

and dispersion is convective when unsteady and diffusive terms are small, 

and Dn2Sc % 1 (zone 4). (2.13) 
Dn2 
- B l  
U2 
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I I Unsteady I 

DnPSc 

I I 1 I 
Unsteady I Unsteady I 

DnPSc 

FIGURE 1. Mapping of different transport regimes as determined by scaling arguments. Indicated 
in each box are the dominant term in the momentum (top) and transport (bottom) equations for 
each zone. (a) For Sc %- 1, ( b )  Sc = 1. 
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1 (as is generally the case), dispersion must be 
unsteady when the flow is unsteady and dispersion must be convective when the flow 
is convective. Thus the criteria for unsteady flow and dispersion (zone 3) are given 
by (2.9) and the criteria for convective flow and dispersion (zone 5) are given by 
(2.10). These two zones are common to figures 1 ( a )  and 1 ( b ) .  

For most gases, Sc x 1 and all transitions between the asymptotic dispersion 
regimes coincide with those between the flow regimes. In this case, zones 2 and 4 are 
eliminated and the criteria for viscous flow and diffusive dispersion (zone 1 )  are given 
by (2.8). 

2.3. Order of magnitude estimates for transport rate 

An expression for the effective diffusivity can be devcloped from a statistical 
perspective (Taylor 1921). Neglecting axial molecular diffusion : 

The analysis reveals that, for Sc 

Deff = (C(0) C(t")) dldA, (2.14) 

where ( ) denotes an ensemble average. Pedley & Kamm (1988) employed (2.14) to 
study the character of axial transport as embodied in a dimensionless transport 
coefficient 9, defined by 

9 = De,,/wi T, (2.15) 

where T is the cycle period. Following their rationale, the contribution of longitudinal 
molecular diffusion is assumed to be additive and the time integral is approximated 
by wie, t,, where wrel is the characteristic axial velocity of species particles relative to 
the average (an average over the area occupied by particles in relative motion) and 
t ,  is the time during which the velocity of a fluid particle remains correlated. 
Accordingly, the denominator of (2.15) may be thought of as the scale for Def f  when 
the relative velocity takes on its maximum value, wo, and the particle motions 
remain correlated for a time T .  The area integral is represented by including a factor, 
FA, characterizing the fraction of the cross-sectional area occupied by the particles 
travelling a t  speed wrel. With these approximations, 59 is expressed as 

(2.16) 

This approach was used by Pedley & Kamm (1988) to predict the rates of axial 
dispersion in an annular region with prescribed secondary and axial velocity 
distributions as a model for curved-tube flow. This same approach is applied below 
to the zones defined in $2.2. 

Viscous-dominated $ow, diflusion-dominated dispersion (zone 1). This zone corre- 
sponds to the straight-tube, quasi-steady result of Taylor (1953). The result 
obtained by Pedley & Kamm (1988) from (2.16) using wrel = wo, t, = a2/K and FA = 1 
gives 

9 - p 2  (2.17) 
for limits (2.11). 

Viscous$ow, low-/3 convective dispersion (zone 4a ) .  As D n  increases, secondary flows 
begin to produce effective convective mixing over the tube cross-section. The 
influence of secondary flow on dispersion is characterized by the ratio of the 
convective and diffusive terms in (2.4) (the ratio of radial diffusion time, 7,d, to 
secondary flow time, 7s): 

- DnZSc, 
7 s  

(2.18) 
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as in the steady flow case. This ratio is simply the secondary flow Pdclet number 
(Rhines & Young 1983). As Dn2Sc increases in magnitude, lateral convective mixing 
causes a reduction in axial transport. Owing, however, to the constancy of the 
secondary flow streamline pattern for small Dn,  convective mixing only tends to  
smooth out concentration gradients along each secondary flow streamline. Therefore, 
the maximum possible effect of secondary flow is to cause the concentration isoplcths 
(lines of constant concentration) and secondary flow streamlines to  coincide. This 
occurs on a timescale 7, - ( u v , / K ) ~ / v ,  (Rhines & Young 1983) where a is taken to be 
the characteristic dimension of the velocity shear field, or when 

7, - (Dn2Sc)-g -4 1 .  
7rd 

(2.19) 

In this limit, dispersion is controlled by diffusion across secondary flow streamlines. 
With equilibration of concentration along the streamline, the characteristic axial 
velocity of a particle on a particular streamline may be represented by the streamline 
average (the integral along the streamline of the axial velocity weighted by the 
inverse of the streamwise velocity). Although the streamline average velocity profile 
is not readily characterized by inspection, Johnson & Kamm (1986) calculated the 
profile from Dean’s perturbation solution and found that the effect of mixing along 
secondary flow streamlines accounts for 75% of the observed reduction in UePP and 
that the character of 9 for Dn2Sc > lo5 is the same as that found in a straight tube; 
that is, 9 - P2. This result applies for /3 4 1 and limits (2.13). 

Viscous flow, unsteady dispersion (zone 2 ) .  A fundamental difference exists between 
species transport in steady as opposed to  oscillatory flow. I n  steady flow, axial 
transport is maximized when K = 0;  fluid particles move purely by convection at the 
local fluid velocity. I n  oscillatory flow with K = 0, species particles move periodically 
about their original position, never achieving any transport in the cycle-average 
sense. Thus, for oscillatory motion with zero mean, lateral mixing of some kind is 
essential for longitudinal transport to  occur a t  all. Furthermore, it will be shown that 
a maximum in transport rate is achieved when the diffusion time and cycle period 
coincide or when /3 - O( 1 ) .  

Secondary flow induced by tube curvature causes lateral mixing supplemental to 
transverse diffusion. Thus, longitudinal transport is reduced by secondary currents 
for steady flow and low-/3 oscillatory flow because the transverse mixing time is 
already smaller than the optimum. For high /3, longitudinal transport is increased 
because secondary flow reduces the ‘ greater-than-optimal ’ transverse mixing time. 

Since the effects of curvature are negligible in zone 2 (Dn2/a2  4 l) ,  the result for 
oscillatory flow in a straight tube pertains (Watson 1983). Noting that t ,  - T and 
wrel - ( w , / a ) ( ~ T ) a ,  we obtain 

9-p2 (2.20) 

which applies when limits (2.12) are satisfied. 
Viscous flow, high-/3 convective dispersion (zone 4 b) . The parameter that  charac- 

terizes the relative effect on dispersion of convection and unsteadiness is the ratio 
of the convective and unsteady tcrms in (2.4): 

T v T Dn2 --S-- 
7s a 012 . 

Since Dn2/a2 > O(10) in zone 4b, the effects of secondary flow are significant. 

(2.21) 
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According to the reasoning presented for zone 2, secondary flow is expected to 
cause 9 to increase. The amount of increase, however, is limited to that observed 
when the concentration isopleths and secondary flow streamlines coincide (as in zone 
4a). In this limit (for sufficiently large Dn2/a2) ,  t ,  - T and w,,, - (wo/a)(KT);, 
yielding 

This result applies for /? 9 1 and limits (2.13). 

characterized by the ratio of the convective and unsteady terms in (2.4) : 

9 - / 3 2 .  (2.22) 

Unsteady flow, unsteady dispersion (zone 3). The influence of secondary flow is 

T v,T Dn2 - ---- 
7 s  a 014 . 

Since Dn2/a2 < 1 in zone 3, the effects of secondary flow are small, thus 

(2.23) 

9 N p-1sc-t (2.24) 
which applies for limits (2.9). 

Convective flow, convective dispersion (zone 5). The nature of transport in this regime 
is more complex owing to the effect that secondary flow exerts on the axial profile, 
in contrast to the entire region of viscous-dominated flow where the axial velocity 
field is unaffected. I n  addition, the secondary flow streamlines are changing during 
the course of the oscillation cycle. All this makes prediction of the scaling laws for 
dispersion difficult. However, analogous to the zone 2 4 b  transition, one might 
expect the additional mixing induced by secondary flow to increase axial transport 
since /3 is large. 

Convective resonance. When the time, 7, - av,, required for a fluid particle to 
traverse the secondary flow circuit equals the cycle period, T ,  a resonant condition 
can exist as demonstrated in the model problem studied by Pedley & Kamm (1988). 
As the particle circulates between regions of high and low axial velocity during each 
cycle, it  could, for instance, travel a t  a speed faster than the average axial velocity 
on the forward stroke and slower than average on the receding stroke, achieving a net 
axial displacement over each cycle. Such resonance exists when 7, - nT where n is 
an odd integer, although the displacement rate diminishes with increasing n. While 
less obvious, it can be shown that all streamlines may exhibit some degree of 
‘resonance’ (Pedley & Kamm 1988). 

Particles on the primary resonant streamline (n = 1)  have the secondary velocity 
v,, = ZJT, where 1, is the streamline circumference. Particles on this streamline will 
be displaced some axial distance each cycle; the characteristic axial velocity of 
motion will scale with wo. The axial direction of travel on each cycle will be correlated 
over the time it takes that fluid particle to migrate to the opposite side of the same 
streamline and hence become ‘antiresonant’. Owing to  the influence of shear- 
augmented diffusion, the timescale for antiresonance to  occur is ?,, as described 
earlier. During this period, a region surrounding the resonant streamline is involved 
encompassing a band of width 

(2.25) 

where av,/an is the characteristic gradient in secondary velocity normal to the 
secondary flow streamline. Combining these estimates with (2.15) we obtain 

9 - constant, (2.26) 

assuming that 1, - a and av,/an - v,/a. 
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The regions where the potential for convective resonance exists are along the 
boundaries of the convective dispersion regimes for Dn2/a2 = const. for the zone 
2 4 b  transition, and Dn2/a4 = const. for the zone 3-5c transition. The first of these 
two boundary zones matches the description just given : for viscous-dominated flow 
the secondary flow streamline pattern remains constant throughout a flow cycle and 
the only mechanism by which a fluid particle can migrate from a resonant to 
antiresonant condition is by diffusion. Hence, dispersion should follow (2.26). 

The transition a t  constant Dn2/a4 is more difficult to characterize, again because 
of the coupling between the secondary flow and the axial velocity profile. The 
complexity of this interaction is seen in the numerical results presented later. By 
analogy to the convective resonance zone found in the viscous flow regime, an 
increase in axial transport is anticipated. The magnitude of this increase, however, 
will be reduced by the tendency for mixing across secondary flow streamlines due to 
the changing Streamline pattern. 

3. Experiments 
3.1. Rationale 

To determine Deff experimentally, a transient method was devised involving the 
progressive spread of an initial discontinuity in concentration given by 

C(E, ~ , g ,  t" = 0) = C, for E < 0, 

C(~,d,g, t"= 0) = O for E >  0. 

The rate of spread of this discontinuity can be described by an effective axial 
diffusivity, Deef, obtained by transforming (2.4) to a reference frame moving with the 
mean fluid velocity ( 5  is the axial coordinate in the moving reference frame) and 
integrating over the tube cross-sectional area, A : 

The velocity and concentration are each expressed as the sum of the respective cross- 
sectional average (@, c) and deviation from the average (w', 6"). Assuming Deee to be 
a function of time only, the one-dimensional diffusion equation is obtained: 

The solution to (3.2) with these initial conditions for a time-dependent diffusivity is 
found using a time transformation (Crank 1956): 

c 
- = ierfc (y), 
co 

where DeFf is the effective diffusivity averaged from 0 to t .  Thus, measurements of 
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Piston 

Primary fl sensor 

FIGURE 2. Sketch of experimental apparatus. 

C a t  a fixed location z,, can, in principle, be used to calculate DefE.  Note that since Deff 
is periodic on time +T, D e f f  is constant for t'= $nT. 

A difficulty arises, however, in that the measurement method employed yields 
values for the diametrical-average concentration (C, ) ,  rather than 6 .  To motivate 
the method of analysis used in this study, consider the concentration distribution a t  
mid-cycle on two consecutive half-cycles. From considerations of symmetry, it can 
be seen that the cross-sectional concentration distributions are essentially reversed ; 
that is, if the concentration in the core is higher than near the wall on the forward 
stroke, this relationship will be inverted (it will be lower in the core) on the reverse 
stroke. The sign of the difference C, - will therefore alternate once each half-cycle. 
Consequently, if values for 7,  and thcn D e f f ,  are computed for each value of Cd, the 
calculated n,,, values will alternately fall above and below the correct value that 
would have been computcd from c. This antisymmetry suggests that a more 
accurate estimate for D,,, might be obtained by averaging the values for D e f f  
calculated on successive half-cycles using C, (call this Deff,,) and fitting thcm to the 
equation 

where the constant B is added to account for the start-up transient. The validity of 
this approach was confirmed by initial tests in a straight-tube system and by 
spectral-element calculations for a curved tube with linear variation in mean 
concentration (Sharp 1987). 

3.2. Apparatus 
The experiments were performed in a curved-tube apparatus (figure 2) formed from 
half-circular 2.54 cm diameter channels of 58.4 cm radius of curvature machined into 
two 2.54 cm thick sheets of acrylic. A 30" wedge was cut away to  allow attachment 
of a piston a t  one end of the torus and a flexible polyethylene bag at the other. The 
torus, though limited in length, avoided any potential effects due to a helix angle. 
Entrance effects in oscillatory flow are confined to a region extending roughly one 
stroke length from each end; for these experiments, a maximum of 15 radii. 

At the midpoint in the torus was located a thin sheet of stainless steel sealed by 

-- -* - 
(Deff,dt")),+ ( D e f f , d t ) k + l  = D e f f t , + D e , f ( t ' k + ~ T ) + B ,  (3.4) 



Dispersion in u curved tube during oscillatory $ow 547 

0 20 40 60 80 

Time (s) 

FIGURE 3. One sample of the raw experimental data (a = 5.81, Dn2/a4 = 0.893) in the 
form of tracer concentration vs. time. 

rubber O-rings to produce a removable gate. The gate was inserted initially to 
produce a discontinuity in gas composition, 11 % methane in nitrogen on one side 
and 5% helium in nitrogen, neutrally buoyant with the methane mixture, on the 
other. 

At the start of an  experiment, the gate was removed and the piston motion 
started. The fluctuations in methane concentration were measured at a single 
location by a laser absorption technique which yields a measure of the average 
concentration of tracer across the tube diameter, the details of which are provided 
by Joshi et ul. (1983). One of two measurement sites was used, 10 or 20 cm from the 
gate. Data were obtained from the first 38 cycles a t  a rate of 40 times per cycle and 
recorded by a DEC MINC-23 computer. 

An example raw data set is shown in figure 3 in terms of diametrical-average 
concentration as a function of time. As expected, a short time passes before the 
concentration at the measurement site rises above zero. Subsequently, the mean 
value and amplitude of the concentration fluctuations increase, the mean value 
ultimately approaching the mean of thc two initial concentrations. The amplitudc 
eventually falls toward zero as the concentration gradient becomes progressively 
smaller. 

In separate experiments, the transition to  turbulence was studied by two different 
methods. One approach was simply to look for the first appearance of random 
fluctuations in the tracer concentration traces. The other involved the use of a hot- 
film probe (TSI model 1201-60) positioned 0.32 cm from the tube wall. The use of 
these methods to measure turbulence is described in 53.4. 

3.3. Results : dispersion 

Experiments were conducted a t  16 frequencies (2 < pz < 500) and 6 stroke lengths, 
L ,  corresponding to six different values ofDn2/u4 - ( a / b )  ( L / U ) ~ ,  namely 0.658,0.893, 
1.30, 1.59, 1.80, 2.37. Here, and in subsequent sections, D n  is computed using the 
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10-4 

0 0  

I I 

bulk r.m.s. velocity. The experiments span the three low-Dn flow regimes of Yamane 
et al. (1985) and lie in zones 1, 3 and 5 in figure 1 ( b ) .  The Schmidt number for all runs 
was 0.68. 

The results of the midcycle-average regression for the cycle average effective 
diffusivity, Delf ,  are shown in figure 4 in terms of the dimensionless transport 
coefficient; the solid line represents the theoretical solution for oscillatory flow in a 
straight tube (Watson 1983) whereas the symbols represent different values of 
Dn2/a4. The viscous flow results for /I2 < 10 coincide with the straight-tube 
theoretical prediction, except a t  the lowest frequency, where the enhancement for 
the smallest value of Dn2/a4 is only about twice the molecular diffusivity; here, 
experimental errors due to flow disturbances or buoyancy effects represent much 
larger relative errors than for the higher-/3 results. Except for the highest frequencies, 
values of 9 for Dn2/a4 < 1 fall on or just above the straight-tube theoretical 
prediction, as would be expected from the flow regime (figure l b ) .  For p2 20, $9 
increases abruptly when Dn2/a4 exceeds unity, but an upper limit in the dispersion 
enhancement is not discernible. This upper limit could not be investigated with the 
present experimental system because of stroke length constraints ; however, the 
spectral-element simulations of $ 5 revealed that the experiments a t  the highest 
DnZ/u4 were near a maximum in 9. 

The abrupt increase in transport rate observed as Dn2/a4 increases above about 1 
corresponds to the enhancement predicted by Eckmann & Grotberg (1987), 
suggesting a common mechanism. These similarities are discussed further in $6. 

The reason for the upturn in $9 a t  high frequency for the two smallest stroke 
lengths is not clear. The increase in the enhancement relative to that for a straight 
tube seen in these two data sets is consistent with the enhanced lateral mixing that 
turbulence would produce. Of course, the other data sets at larger Dn2/a4 would also 

FIQURE 4. Experimental results for normalized diffusivity 9 plotted against $. Solid line: 
theoretical prediction for straight tube (Watson 1983). 0, Dn2/a4 = 0.658; 0 ,  0.893; A, 1.30; 
0, 1.59; 0, 1.80; m, 2.37. 
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FIQURE 5. Data for concentration vs. time for a = 12, Rela = 90 showing the effect of 
apparent turbulence. Compare to figure 3. 

be influenced by turbulence, but the extra lateral mixing appears to have less of an 
effect on axial transport, possibly because the lateral mixing is already enhanced 
owing to secondary flow. 

3.4. Results : turbulence 
Random fluctuations in concentration were noticed in several experiments. The 
fluctuations were of the order of a few percent a t  the onset and grew in characteristic 
frequency and amplitude as piston frequency and/or stroke length increased (an 
example of the more severe fluctuations is shown in figure 5 ) .  The occurrence of 
fluctuations correlated well with the Reynolds number based on Stokes layer 
thickness, Rela, with the transition region being approximately 70 < Re/a < 120. 
Similar fluctuations were not apparent in the straight-tube experiments (Sharp 
1987), even though they reached higher values of Rela. 

To further investigate this phenomenon, a hot-film probe was inserted into the 
tube at mid-length and at  radial position, r la  = 0.75. The velocity traces obtained 
(see for example, figure 6) suggest a transition in the range 80 < Re/a < 130. In both 
cases, a transition to turbulence is observed at values of Rela well below the 
previously reported transition at  Rela x 550 to large-amplitude turbulence in 
oscillatory flow in a straight tube (Hino, Sawamoto & Takasu 1976). 

This result is puzzling for several reasons. First, other experiments have 
demonstrated that, for steady flow, curvature tends to boost the transition Reynolds 
number (Sreenivasan & Strykowski 1983). Second, the transition to turbulence in 
oscillatory flow in a straight tube is characterized by the appearance, then rapid 
dissipation, of turbulent bursts that appear just as the flow begins to decelerate. In 
contrast, the disturbances in the curved tube are observed during the period of peak 
velocity, both during acceleration and deceleration, and lack the abrupt, almost 
explosive character seen in straight tubes. The instabilities seen here could be 
associated with a much smaller-amplitude disturbance seen in straight tubes at 
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FIGURE 6. Traces from the hot-film probe showing the variation in velocity with time at a 
location 0.32 cm from the tube wall. All data for L / a  = 14.75. 

somewhat lower values of Rela (about 180 for the experiments of Hino et al. 1976). 
These small-amplitude disturbances observed in straight tubes, however, are 
typically confined to the early stages of flow acceleration and are of a much smaller 
amplitude than those observed here. 

Finally, while it is possible that the presence of the flow probe may have 
contributed to the instability in those experiments, the fact that  fluctuations were 
evident in the concentration measurements as well proves that disturbances do occur 
even in the absence of a probe. 

The unique character of the instability seen in these curved-tube experiments 
raises the possibility that an entirely different mechanism may be responsible, 
perhaps one linked to the presence of secondary flows. Further tests or analyses will 
be needed, however, to adequately address this issue. 
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4. Monte Carlo simulations 
4.1. Methods 

The model, adapted from Johnson & Kamm (1986), is a probabilistic treatment of 
longitudinal dispersion of a number of tracer 'particles '. The Lagrangian dis- 
placement of each particle was tracked by sequentially advancing ( 1 )  in the 
Poiseuille axial flow field, (2) in the Dean (1928) secondary flow field and (3) in a 
random walk dispersive displacement. Particle displacements were computed by the 
Euler-forward-differencing scheme, except for (2) which was by a method of second- 
order accuracy. The effective diffusivity was derived from the rate of change of the 
variance of the tracer cloud. 

Different aspects of the model restricted the range of validity of the results. The 
momentum equation used by Dean (1928) to solve for the secondary velocity field 
applies only for curvature ratio a /b  < 1 .  The first term of his expansion for the 
secondary flow stream function used in the simulations is restricted to D n  < 17 and 
strictly applies only to quasi-steady flow, a < O( 1 ) .  Since Johnson & Kamm (1986) 
found that the effcctive axial diffusivity, DePP, is predominantly influenced by the 
enhanced cross-sectional mixing due to secondary flow and virtually unaffected by 
the associated shift in the axial velocity profile, the latter was not included. 

The explicit differencing scheme dictated timc-step constraints identical to those 
discussed by Johnson & Kamm related to radial diffusion time, secondary flow time 
and numerical diffusion time. In  addition, the time step was constrained to be much 
less than the cycle period, At < &T. In order to sample a wide range of p2 and 
maintain a small, i t  was necessary to set the Schmidt number to  a large value 
(Sc = lo4), which is typical of solute dispersion in liquids. The number of particles 
was 500 in all runs. The expected error in DefP scales as Nit ,  where N, is thc 
number of particles. 

From an  initial condition of particles randomly distributed on a cross-sectional 
plane, the simulation was run for two cycles and the axial dispersion was computed 
at the end of each cycle. No systematic differences were found between the values for 
Deff computed on the first two cycles, suggesting that a periodic steady state is set 
up almost immediately, even when p2 > O(1). 

4.2. Monte Carlo results 
A matrix of calculations was performed covering the ranges 1 < Dn2Sc < lo6 and 
1 < p2 < lo3 (spanning zones 1, 2 and 4), except for the region of low p2 and high 
Dn'Sc where computational time became excessive. The dimensionless dispersion co- 
efficient, 9, is plotted as a function of Dn'Sc in figure 7 (a )  and against Dn2/a2  in figure 
7 ( b ) .  Several limits are evident in the results. First, dispersion in a curved tube is 
indistinguishable from that in a straight tube when the characteristic secondary flow 
time is either long compared to the radial diffusion time (Dn'Sc ? 100) for low p, or 
is long compared to the cycle period (Dn2/a2 2 10) for high b2. The curvature effect 
at low p' can be seen in the curves for p2 = 1 and 10. These are in close agreement 
with the steady flow prediction of Johnson & Kamm (1986) ; hence, steady flow 
behaviour is observed for all values of Dn'Sc when p2 5 10. In  this quasi-steady limit, 
9 is diminished owing to curvature by a limiting factor of about 5 a t  high Dn2Sc. The 
diminution continues as p increases until p" x 50; above this, mixing due to 
secondary flow enhances 9 and, for a certain range of Dn2/a2 ,  curved-tube dispersion 
exceeds that in a straight tube (figure 7 b ) .  The curves for p2 = lo2 and lo3 show clear 
maxima a t  Dn2Sc = lo4 and lo5, respectively (figure 7 a ) ,  or, when L)n2/a2 x lo2 
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FIGURE 7 .  Results from the Monte Carlo simulation, Sc = lo4. ( a )  9 vs. Dn2Sc. Symbols denote 
values of p2: ., 1 ; +, 10; A, 50; a, 100; 0, 1000. Solid line is the prediction for steady curved- 
tube flow of Johnson & Kamm (1986). Dashed lines are drawn to fit the present data. ( b )  9 vs. 
Dn2/a2. Symbols as in (a) .  

(figure 7 b ) .  As pointed out in $2, Dn2/a2 represents a ratio of secondary flow time to 
cycle time and the appearance of a peak when Dn2/a2 = constant is strongly 
suggestive of convective resonance. According to  the previous scaling predictions, 
convective resonance causes 9 to remain constant near its maximum value, 
consistent with these results. Our results in zone 4 b  are too sparse to either confirm 
or disprove the scaling predictions of $2. 

5. Spectral-element simulations 
Numerical simulations of dispersion along a constant axial concentration gradient 

(see the Appendix for methods) were performed a t  six values of pz between 1 and 
lo3. The Schmidt number for all runs was 0.68 as in the experiments; values of 
Dn2Sc for each test sequence at constant pz are contained in the approximate range 
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Dn'la' = 0.049 
Dn = 3.25 
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FIQURE 8. Contour plots showing the spectral-element results for different values of Dn. p" = 10, 
Sc = 0.68, 4 (phase angle) = 90'. Shown, from top to bottom, are (a )  axial velocity, ( b )  secondary 
flow streamlines and (c) concentration isopleths. Dashed lines on the axial velocity plots indicate 
negative velocity and, on the concentration plots, indicate concentration lower than the cycle 
average. The centre of curvature is to the left. 

1 < Dn2Sc < lo5. The results are discussed below, grouped in terms of the values of 
p2 for each run and are presented in figures 8-12. In  $6  the predicted rates of axial 
dispersion are discussed in the context of the Monte Carlo simulations and the 
experiments. 

p' = 1 .  The behaviour a t  low frequency was essentially indistinguishable from that 
in steady flow. The effects of curvature on axial velocity profiles set in at D n  x 10; 
on concentration a t  Dn2Sc x lo2. 

p2 = 10. Detailed results for this sequence of simulations are presented in figures 
8 and 9. As D n  increases, the axial velocity and Concentration distributions are at 
first axisymmetric (e.g. Dn = 3.25), then become increasingly skewed along the axis 
of curvature, with peaks approaching the outer wall. The secondary flow streamline 
pattern remains relatively fixed as flow conditions vary. At the highest values ofDn, 
there is a tendency for the peak in axial velocity to  form near the inner wall of the 
bend as the flow begins to accelerate (following inviscid behaviour), then to  move 
progressively towards the outside wall, convected there by the secondary motions. 
There is some suggestion that, at higher values of Dn, the axial velocity peak will 
separate into two, symmetric about the plane of curvature, as seen a t  p2 = 100. The 
peak in axial velocity lags the pressure gradient by an amount ranging from 63.3" to  
55.9" as Bn increases. The time-dependent volume flow rate is indistinguishable from 
sinusoidal. 
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FIGURE 9. Contour plots showing the spectral-element results for different phase angles, #. 
p" = 10, Dn = 75.5, Dn2/a4 = 26.4. See caption of figure 8 for detailed description. 

The point of maximum concentration generally follows the point of maximum 
axial velocity. I n  fact, there is reasonable resemblance between the axial velocity 
contours and concentration isopleths for all phases and all values of Dn. This is in 
contrast to a previous study of dispersion (Johnson & Kamm 1986) that 
demonstrated an alignment between the concentration isopleths and the secondary 
flow streamlines a t  similar values of Dn2Sc, but for high Sc and low a.  The 
explanation for the difference is that Johnson & Kamm examined the transition from 
diffusive to convective dispersion in viscous-dominated flow (zone 1 4 ) ,  while the 
present results represent the emerging effects of secondary convection in flow with 
both viscous and unsteady character and dispersion with both diffusive and 
unsteady character (zone 1/3 ~ zone 5/3). This unsteadiness, which can be seen 
readily in the axial velocity and concentration contours and to a lesser degree in the 
secondary flow streamlines of figure 9, prevents equilibration of concentration along 
secondary flow streamlines. 

The frequency parameter a for this series is 3.83, close to the lower value of 2.8 
employed in the numerical study of Yamane et al. (1985). Their results for Dn = 21.2 
and 212 are quite similar to  the present results for Dn = 33.8 (Dn2Sc = 779) and 
Dn = 75.4 (Dn'Sc = 3876). 

p2 = 100 (figures 10 and 11).  For these tests, a is sufficiently high to produce a 
tendency (evident only a t  the lowest value of Dn) for the two-cell pattern to 
transform into a four-cell pattern as was previously predicted by Lyne (1971). This 
tendency, however, is negated once the secondary flow magnitude begins to increase 
a t  values of Dn > lo2 and the two-cell pattern reappears. Interestingly, the return of 
the two-cell pattern produces vortices that are a t  first highly skewed towards the 
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FIGURE 10. Contour plots showing the spectral-element results for different I 

p2 = lo2, 4 = 90'. See caption of figure 8 for detailed description. 
lues of Dn. 

inside wall (figure 10, D n  = 158), before becoming more symmetric again a t  higher 
Dn . 

The effects of curvature become important when Dn2/a4  - O(1) (consistent with 
(2.23)) as evidenced by the changes apparent in the axial velocity and concentration 
contours. Both clearly exhibit dual peaks for part of the cycle as only suggested in 
the results for p2 = 10. Most critical as far as axial transport is concerned, the axial 
velocity and concentration gradients become ' smeared ' over the entire cross-section, 
allowing the entire area to take part in the dispersion process rather than restricting 
it to a narrow boundary layer at the wall as in a straight tube. 

The pattern exhibited by the concentration isopleths in figure 11 suggests a region 
of high concentration circulating around with the secondary flow, having a period of 
circulation comparable to the cycle period. This coincidence of the secondary flow 
time and oscillation period was shown in 52 to give rise to  enhanced axial transport 
by a mechanism termed 'convective resonance '. The situation is clouded here, 
however, because, for Sc = 1, momentum and mass are similarly affected and the 
axial velocity peak also tends to  move across the tube. Since regions of high axial 
velocity tend to be associated with regions of high concentration even in the absence 
of convective resonance (see e.g. the cases with no significant secondary flow) this 
motion of the peak in concentration alone is insufficient to identify the responsible 
mechanism. 

For these runs, the peak flow lags behind the imposed pressure gradient by 82" for 
all cases. The results of Yamane et al. (1985) for 01 = 7.9 with D n  = 21.2 and 212 are 
similar in range and character to those of this series. 
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CURE 11.  Contour plots showing the spectral-element results for different phase angles, 4. 
8" = lo2, Dn = 228, Dn2/a4 = 2.41. See caption of figure 8 for detailed description. 

p2 = 200 (figure 12). Of all the conditions tested, this sequence shows best the 
transition from a four-cell to two-cell pattern as curvature effects come into play. 
This transition takes place when Dn2/a4 - 0(1),  a t  the point where all curvature 
effects begin. It is interesting to note that a transition back to a four-cell pattern may 
occur for high Dn (Daskopoulos & Lenhoff 1989). The flow lags behind the pressure 
gradient by 84" for both cases. 

In  this sequence, as in the others a t  different values of /I2, it was possible to 
examine the scaling laws proposed in $2 for variations in the magnitude of t h e  
secondary flow velocity, v,. Consistent with the predictions, V,  = (v,/w,) (b/a)i was 
found to vary as D n  for a < 5 and as Dn/a2 for a > 5. Furthermore, V,  reached a 
maximum value x 1 when Dn > 30 or when h / a 2  x 1.  

6. Discussion and comparison of results 
The different transport regimes identified in figure 1 were established in $2 by 

order-of-magnitude estimates. According to the scaling laws developed there, the 
effects of curvature on axial transport can be considered negligible in zones 1,  2 and 
3. In  each case, however, a transition into a zone with significant curvature effects 
is indicated by a different dimensionless parameter formed by the ratio of the 
convective term and the dominant term in (2.4) for that zone. In other words, 
curvature becomes important when the secondary flow time, 7,, approaches the 
radial diffusion time, rrd, for quasi-steady dispersion, or the cycle period, T, for 
unsteady dispersion. Specifically, when flow and transport are both quasi-steady 
(zone l ) ,  curvature becomes important when 7, becomes comparable to 7,d or, 
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1-element results for different values of Dn. FIQURE 12. Contour plots showing the spec 
= 200, # = 90". See caption of figure 8 for detailed description. 

equivalently, when the secondary flow PBclet number Dn2Sc - 0(102) ((2.18), figures 
7 a  and 13a). In zone 1,  where the flow is quasi-steady, but dispersion is unsteady, 
secondary flows become significant when 7, is comparable with T ;  or when 
Dn2/ct2 - O ( l 0 )  ((2.21) and figure 7b) .  In zone 3 where both flow and transport are 
unsteady, the transition to significant secondary flow still occurs when r,/T N O( 1 ) ,  
but since the scaling for us, and therefore 7,, has changed, this occurs when 
Dn2/a4 - 0(1) ((2.23) and figure 13b). 

Optimum transport is achieved when the lateral mixing time is comparable with 
the cycle period, thus the effects of secondary flow manifest themselves in different 
ways depending on whether radial diffusion is already providing optimal mixing (i.e. 
whether p2 is greater or less than 10). For p2 < 10, mixing by diffusion is already too 
rapid, so curvature causes a gradual reduction in 9 when Dn2Sc increases from O( lo2) 
to 0(105), by about a factor of 5 (Johnson & Kamm 1986), to a lower constant value 
as indicated in figure 7 ( a )  for high Sc. Although the data for Sc - 0 ( 1 )  seem to 
exhibit a similar pattern (figure 13a), a separate study in steady flow (Daskopoulos 
& Lenhoff 1988) has recently shown that 9 continues to fall as Dn increases, far 
below the constant value observed at high Sc. Their results for Sc = 1 (also plotted 
in figure 13a) approximately agree with our 10w-p~ data for Sc = 0.68, but extend to 
much higher values of Dn. Daskopoulos & Lenhoff (1988) have also shown that 
when Dn > lo2, a second transition occurs to a regime in which transport rate falls 
approximately as Dn-' for all Sc. This high-Dn transition has not been observed in 
previous studies which had used the velocity profiles appropriate for Dn < 17. 
Daskopoulos & Lenhoff attribute this behaviour to a gradual movement of the 
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secondary flow vortex centre towards the outer wall of the tube and a subsequent 
reduction in the lateral mixing time. 

When p2 > 10, increased lateral mixing is bencficial. For p2 > 10 and a < 2, 
curvature at first causes an abrupt increase in 9, beginning at Dn2/a2 z 10 and 
reaching a peak when Dn2/a2 z lo2 (figure 7 b). This transport maximum agrees both 
in location in parameter space and in magnitude with the convective resonance peak 
observed in a model problem studied by Pedley & Kamm (1988). Although the 
behaviour beyond the peak cannot be inferred from the present results, scaling 
predictions (2.21) and (2.22) suggest that 9 should eventually scale as /32 as Dn2/az 
is increased further. 

When p2 > 10 and Sc - O( l ) ,  the pattern of behaviour is changed only slightly as 
can bc sccn by a comparison of figures 7 and 13. As when Sc % 1, thc transition to 

FIGURE 13. Results for axial transport for the spectral-element calculations (fully or partially solid 
symbols) and selected experimental results (open symbols). ( a )  9 us. Dn*Sc. Values of are : x , 
1 ;  0 ,  10; m, 50; A, 100; +, 200; m, 1000 for numerical results; 0, 9.2; n,46; A, 92; 0, 230 
for the experiments. Solid line is the numerical result of Daskopoulos & Lenhoff (1988). Dashed 
lines are drawn to fit the present data. ( b )  B as. Dn2/a4.  Symbols as in (a) .  
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a regime influenced by curvature causes an abrupt increase in 9, this time by about 
a factor of 6, the main difference being that the location of the transition is governed 
by Dn2/a4  rather than by Dn2/a2  (figures 7 b and 13b). This pattern was also observed 
by Eckmann & Grotberg (1987). The appearance of a sharp rise when 7, - T suggests 
that  convective resonance is again responsible as it was when Sc $- 1. The picture is 
somewhat complicated in this instance, however, owing to the changing pattern of 
secondary flow streamlines (figure 11)  that  produce a form of lateral convective 
mixing not present in the simulations a t  high Sc or in the model problem of Pedley 
& Kamm (1988). Consequently, the transport enhancement observed might be due 
either to convective resonance or simply to the increase in lateral mixing brought 
about by the shifting secondary flow pattern. The rate of transport falls slightly as 
flow amplitude continues to  increase but, owing to numerical difficulties, the range 
of parameters tested beyond the peak is rather small. It is interesting to note, 
however quite speculatively, that  the numerical problems, which are characterized 
by a gradual appearance of apparently random fluctuations, occur a t  about the same 
point a t  which turbulence was observed in the experiments, despite the two- 
dimensional nature of the calculation. 

Also shown in figure 13 are selected experimental results a t  values of p2 that 
roughly coincide with those chosen for the numerical runs. The experiments fall in 
the vicinity of the abrupt increase in transport rate and are in generally good 
agreement with the computed results. 

7. Comments on pulmonary gas transport 
I n  recent experiments (Paloski, Slosberg & Kamm 1987), i t  was found that axial 

transport ratc in a lung-like model was about a factor of 3 greater than that in a 
straight tube of similar dimensions, independent of the stroke volume and frequency 
combination used. At high p2, the results reported here for a uniformly curved tube 
also exhibit a relatively constant increase in 9, by about a factor of 6 provided that 
Dn2/a4  2 2. 

This comparison and the recognition that secondary flows of the type seen in 
curved tubes are also observed in lung-like models (Schroter & Sudlow 1969) provide 
some basis for applying the present results to mechanical ventilation of the lung. 
When Sc z 1,  as it is for most respiratory gases, figure 1 (b) pertains and zones 2 and 
4 are eliminated. Therefore, 9 is reduced by secondary flow for p2 < 10 when Dn2Sc 
rises above 0(102), but is enhanced for p2 > 10 when Dn2/a4 (which is proportional 
to the square of the axial stroke length) exceeds O( 1). Under typical flow conditions 
used in high-frequency oscillation, only in the trachea and first several generations 
in the lung is p2 > 10 (Jan, Shapiro & Kamm 1989). The rest of the airways fall into 
the 10w-p~ regime by virtue of their small dimension. Furthermore, the nature of the 
branching geometry causes the normalized stroke length (and therefore Dn2/a4)  to be 
relatively invariant over the entire network thereby leading to a locus of states 
existing in the lung that lie along a line parallel to the zone 3-5c boundary for a given 
frequency and tidal volume. Keeping in mind that the rate of gas transport will vary 
as ,!IePf = wi T 9 ,  two possibilities for optimization suggest themselves. Noting that 
the pressures generated in the lung, and therefore the potential for lung damage and 
cardiovascular complications, increase with increasing flow velocity and frequency, 
there may be some advantage in choosing a value of Dn2/a4 just  large cnough to 
attain the high rates of dispersion of zone 5 c  in the large airways, bu t  not so high as 
to  bring about the reduced transport associated with zone 5 a  in the small to medium 
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sized airways. On the other hand, if that flow condition proves incapable of 
producing adequate gas exchange (as seems likely based on previous animal 
experiments (Drazen et al. 1984)) the alternative is to simply boost stroke volume 
and frequency, with the emphasis being on stroke volume. 
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8. Summary 
The behaviour of axial transport has been studied and characterized for a wide 

range of oscillatory flow conditions in a uniform tube with small curvature ratio. A 
variety of methods have been employed including two numerical procedures and a 
series of experiments. Several regions of overlap exist and the agreement is generally 
quite good. 

The existence of a sharp increase in transport rate is demonstrated for p2 > 10, in 
liquids when Dn2/a2 - 0(1O2) ,  and in gases when Dn2/a4 - O(1). Peaks occur when 
7, - T, suggesting that they are caused by a type of resonance phenomenon. 

The calculated flow patterns for Dn2/a4 both above and below 1 illustrate a 
transition from the four-cell pattern observed in numerous previous studies, to a two- 
cell pattern characteristic of lower values of a2. Thc four-cell pattern appears to be 
stable only when the secondary flow is incapable of producing significant mixing in 
the cross-sectional plane. 

These findings suggest that, to  the extent that transport in the airways of the lung 
is influenced by the curvature found in each bifurcation, the rate of axial gas 
exchange can be enhanced by operating at frequencies and tidal volumes which 
produce local values of Dn2/a4 > 1 throughout the lung. 

The support of the National Science Foundation (8313017-MEA) and the National 
Institutes of Health (HL33009) are gratefully acknowledged. The spectral-element 
calculations were performed using a modified version of NEKTON (Nektonics, Inc., 
Cambridge, MA 02134). 

Appendix. Spectral-element method 
The normalized mass momentum and species conservation equations ((2.1)-(2.4)) 

are solved numerically in domain D with boundary i3D. A mixed explicit-implicit 
time advancement splitting scheme is employed for the temporal discretization 
similar to the scheme first used by Orszag & Kells (1980). The advantage of the 
scheme is that it reduces the coupled system of momentum equations into separately 
solvable equations for pressure and velocity. The axial momentum equation is solved 
first, beginning with a third-order Adams-Bashforth formulation for the nonlinear 
terms, 

2 z;n+l- W n  
= - C pk(  t F k  . V W ~ - ~ )  + 17,n+a in D,  

At k=O 

where Po = 23/13, P1 = -16112 and p2 = 5/12 and w n  = w(nAt), vn = v(nAt) and 
Z7!+$ = Z7,[(n+;)At]. This is followed by the implicit viscous correction step 
(Crank-Nicolson ) 

2 Wn+l - $n+l 
= - V2[;wn+l +fuP] in 11 ; 

At Dn 
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the no-slip boundary conditions for w are imposed a t  this step. The cross-sectional 
momentum equations are solved ncxt using 

fin+’- vn 
= c. pk[Vn-k  x d - k ] ,  

At k=O 

where an = V x vn is the vorticity. Continuity is satisfied in the pressure step by an 
equation formed by taking the divergence of the cross-sectional momentum 
equations and including the continuity constraint, for the intermediate velocity 
component 1, i.e. v - 1 = 0, 

both applied in domain D .  The boundary condition for pressure is of Neumann type 
and is derived from (A 5) by further assuming that 6 - n = 0 ( n  is the unit vector 
normal to the boundary) : 

a n ,  - p + i .  n 
an At ’ 

~~ - 

The viscous correction step is given by 

Lastly, the species conservation equation is also solved in two substeps as follows: 

with V C . n = O  onaD (A 9) 

employed in substep (A 8). 
Equations (A l ) ,  (A 3) and (A 7)  represent explicit treatment of the convective 

terms. We choose the Adams-Bashforth third-order method because of its very low 
dispersion errors and the relatively large portion of the imaginaxy axis included 
within the absolute stability region of the scheme. The implicit treatment of the 
diffusive contributions in (A 2) ,  (A 6) and (A 8) results in a very efficient and robust 
inversion of the global system matrices. The time step is dictated by (A i) ,  (A 3) and 
(A 7) and time-accuracy considerations. The scheme overall has O(At)  accuracy, 
although all intermediate substeps involve high-order integration schemes. 

The spatial discretization is performed using an isoparametric spectral-element 
method (Patera 1984), a high-order weighted-residual technique which combines the 
flexibility of finite-element methods (Strang & Fix 1973) and the accuracy of spectral 
schemes (Gottlieb & Orszag 1977). The domain D is divided into quadrilateral 
elements with local coordinates ( r ,  8) which map to  global space (2, y) by tensor 
product mapping 

N N  
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and the dependent variables are described by 
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N N  

f %  = c c f p , ( r ) h , ( 4 .  
i=o  j-0 

For convenience the resolution in the two spatial directions has been assumed to be 
the same; however, in practice this need not be the case. Here (x, y)Z represents the 
global coordinates of grid points within element k, and the f Fj are the nodal values 
of dependent variables f :. The hm(q) are Nth-order local Chebyshev-Lagrangian 
interpolants, which have the property 

hm(qn) = am,, 

where am, is the Kronecker delta. This is the generalized procedure for finite-element 
tcnsor product bases, where N = 1 gives the common case of bilinear interpolants, 

h,(q) = i(1 -qL h,(q) = ac1 +q).  (A 12) 

In  extending this procedure to higher order, collocation points (nodal points within 
the element) are chosen on a Gauss-Lobatto-Chebyshev distribution in local 
coordinate qn 

qn = - c o s b ] ;  72 = 0 , N  

to assure rapid convergence (Gottlieb & Orszag 1977). 
The matrix from the discretized equation is obtained by substituting (A 10) and 

(A 11) into the variational equivalent of the governing equations and selecting test 
functions identical to  the high-order extension of (A 12). Implementation details are 
discussed in Korczak & Patera (1986) and Karniadakis (1990). Similar spectral- 
element codes have been validated with experimental results in a variety of unsteady 
laminar as well as turbulent flows (Karniadakis 1989). 
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